使用 OGL 4.0 GLSL 中的曲面细分着色器更改几何体

一个简单的 OGL 4.0 GLSL 着色器程序,显示如何使用曲面细分着色器向几何体添加细节。该程序使用 python 脚本执行。要运行脚本,必须安装 PyOpenGL 和 NumPy。

此示例中的基本网格是由 20 个三角形组成的二十面体。曲面细分控制着色器定义每个三角形如何分成一组许多小部件。在对三角形进行细分时,生成的数据是基于原始三角形的重心坐标。曲面细分评估着色器从以这种方式获得的数据生成新几何。在这个例子中,每个三角形在中间得到一个峰值,它从 icosader 的中心向外升起。以这种方式,产生比原始二十面体更复杂的几何形状。

顶点着色器

tess.vert

layout (location = 0) in vec3 inPos;
layout (location = 1) in vec3 inNV;

out TVertexData
{
    vec3 pos;
    vec3 nv;
} outData;

uniform mat4 u_projectionMat44;
uniform mat4 u_modelViewMat44;
uniform mat3 u_normalMat33;

void main()
{
    vec4 viewPos = u_modelViewMat44 * vec4( inPos, 1.0 );
    
    outData.pos = viewPos.xyz / viewPos.w;
    outData.nv  = u_normalMat33 * normalize( inNV );
    
    gl_Position = u_projectionMat44 * viewPos;
}

曲面细分控制着色器

tess.tctrl

#version 400

layout( vertices=3 ) out;

in TVertexData
{
    vec3 pos;
    vec3 nv;
} inData[];

out TVertexData
{
    vec3 pos;
    vec3 nv;
} outData[];

void main()
{
    outData[gl_InvocationID].pos = inData[gl_InvocationID].pos;
    outData[gl_InvocationID].nv  = inData[gl_InvocationID].nv;
  
    if ( gl_InvocationID == 0 )
    {
        gl_TessLevelOuter[0] = 10.0;
        gl_TessLevelOuter[1] = 10.0;
        gl_TessLevelOuter[2] = 10.0;
        gl_TessLevelInner[0] = 10.0;
    }
}

曲面细分评估着色器

tess.teval

#version 400

layout(triangles, equal_spacing, ccw) in;

in TVertexData
{
    vec3 pos;
    vec3 nv;
} inData[];

out TTessData
{
    vec3  pos;
    vec3  nv;
    float height;
} outData;

uniform mat4 u_projectionMat44;

void main()
{
    float sideLen[3] = float[3]
    (
        length( inData[1].pos - inData[0].pos ),
        length( inData[2].pos - inData[1].pos ),
        length( inData[0].pos - inData[2].pos )
    );
    float s = ( sideLen[0] + sideLen[1] + sideLen[2] ) / 2.0;
    float rad = sqrt( (s - sideLen[0]) * (s - sideLen[1]) * (s - sideLen[2]) / s );

    vec3 cpt = ( inData[0].pos + inData[1].pos + inData[2].pos ) / 3.0;
    vec3 pos = inData[0].pos * gl_TessCoord.x + inData[1].pos * gl_TessCoord.y + inData[2].pos * gl_TessCoord.z;
    vec3 nv  = normalize( inData[0].nv * gl_TessCoord.x + inData[1].nv * gl_TessCoord.y + inData[2].nv * gl_TessCoord.z );

    float cptDist      = length( cpt - pos );
    float sizeRelation = 1.0 - min( rad, cptDist ) / rad; 
    float height       = pow( sizeRelation, 2.0 );

    outData.pos    = pos + nv * height * rad;
    outData.nv     = mix( nv, normalize( pos - cpt ), height );
    outData.height = height;

    gl_Position = u_projectionMat44 * vec4( outData.pos, 1.0 );
}

片段着色器

tess.frag

#version 400

in TTessData
{
    vec3  pos;
    vec3  nv;
    float height;
} inData;

out vec4 fragColor;

uniform sampler2D u_texture;

uniform UB_material
{
    float u_roughness;
    float u_fresnel0;
    vec4  u_color;
    vec4  u_specularTint;
};

struct TLightSource
{
    vec4 ambient;
    vec4 diffuse;
    vec4 specular;
    vec4 dir;
};

uniform UB_lightSource
{
    TLightSource u_lightSource;
};

float Fresnel_Schlick( in float theta );
vec3 LightModel( in vec3 esPt, in vec3 esPtNV, in vec3 col, in vec4 specularTint, in float roughness, in float fresnel0 );

void main()
{
    vec3 col = mix( u_color.rgb, vec3( 1.0, 1.0, 1.0 ), inData.height );
    vec3 lightCol = LightModel( inData.pos, inData.nv, col, u_specularTint, u_roughness, u_fresnel0 );
    fragColor = vec4( clamp( lightCol, 0.0, 1.0 ), 1.0 );
}

float Fresnel_Schlick( in float theta )
{
    float m = clamp( 1.0 - theta, 0.0, 1.0 );
    float m2 = m * m;
    return m2 * m2 * m; // pow( m, 5.0 )
}

vec3 LightModel( in vec3 esPt, in vec3 esPtNV, in vec3 col, in vec4 specularTint, in float roughness, in float fresnel0 )
{
  vec3  esVLight      = normalize( -u_lightSource.dir.xyz );
  vec3  esVEye        = normalize( -esPt );
  vec3  halfVector    = normalize( esVEye + esVLight );
  float HdotL         = dot( halfVector, esVLight );
  float NdotL         = dot( esPtNV, esVLight );
  float NdotV         = dot( esPtNV, esVEye );
  float NdotH         = dot( esPtNV, halfVector );
  float NdotH2        = NdotH * NdotH;
  float NdotL_clamped = max( NdotL, 0.0 );
  float NdotV_clamped = max( NdotV, 0.0 );
  float m2            = roughness * roughness;
  
  // Lambertian diffuse
  float k_diffuse = NdotL_clamped;
  // Schlick approximation
  float fresnel = fresnel0 + ( 1.0 - fresnel0 ) * Fresnel_Schlick( HdotL );
  // Beckmann distribution
  float distribution = max( 0.0, exp( ( NdotH2 - 1.0 ) / ( m2 * NdotH2 ) ) / ( 3.14159265 * m2 * NdotH2 * NdotH2 ) );
  // Torrance-Sparrow geometric term
  float geometric_att = min( 1.0, min( 2.0 * NdotH * NdotV_clamped / HdotL, 2.0 * NdotH * NdotL_clamped / HdotL ) );
  // Microfacet bidirectional reflectance distribution function 
  float k_specular = fresnel * distribution * geometric_att / ( 4.0 * NdotL_clamped * NdotV_clamped );
  
  vec3 lightColor = col.rgb * u_lightSource.ambient.rgb +
                    max( 0.0, k_diffuse ) * col.rgb * u_lightSource.diffuse.rgb +
                    max( 0.0, k_specular ) * mix( col.rgb, specularTint.rgb, specularTint.a ) * u_lightSource.specular.rgb;
  return lightColor;
}

Python 脚本

from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import numpy as np
from time import time
import math
import sys

sin120 = 0.8660254
rotateCamera = False

# draw event
def OnDraw():
    dist = 3.0
    currentTime = time()
    comeraRotAng = CalcAng( currentTime, 10.0 ) 
    # set up projection matrix
    prjMat = Perspective(90.0, wndW/wndH, 0.5, 100.0) 
    # set up view matrix
    viewMat = np.matrix(np.identity(4), copy=False, dtype='float32')
    viewMat = Translate( viewMat, np.array( [0.0, 0.0, -12.0] ) )
    viewMat = RotateView( viewMat, [30.0, comeraRotAng if rotateCamera else 0.0, 0.0] )

    # set up light source
    lightSourceBuffer.BindDataFloat(b'u_lightSource.dir', TransformVec4([-1.0, -1.0, -5.0, 0.0], viewMat) )
    
    # set up icosahedron model matrix
    icoModelMat = np.matrix(np.identity(4), copy=False, dtype='float32')
    if not rotateCamera: icoModelMat = RotateY( icoModelMat, comeraRotAng ) 
    icoModelMat = Scale( icoModelMat, np.repeat( 5, 3 ) )
    icoModelMat = RotateY( icoModelMat, CalcAng( currentTime, 17.0 ) )
    icoModelMat = RotateX( icoModelMat, CalcAng( currentTime, 13.0 ) )

    # set up attributes and shader program
    glEnable( GL_DEPTH_TEST )
    glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT )
    glUseProgram( shaderProgram )
    glUniformMatrix4fv( projectionMatLocation, 1, GL_FALSE, prjMat )
    lightSourceBuffer.BindToTarget()
    
    # draw icosahedron
    icoMaterialBuffer.BindToTarget()
    modelViewMat = Multiply(viewMat, icoModelMat)
    glUniformMatrix4fv( modelViewMatLocation, 1, GL_FALSE, modelViewMat )
    glUniformMatrix3fv( normalMatLocation, 1, GL_FALSE, ToMat33(modelViewMat) )
    glBindVertexArray( icoVAObj )
    glPatchParameteri( GL_PATCH_VERTICES, 3 )
    glDrawArrays( GL_PATCHES, 0, len(icoPosData) )
    
    glutSwapBuffers()

def Fract(val): return val - math.trunc(val)
def CalcAng(currentTime, intervall): return Fract( (currentTime - startTime) / intervall ) * 360.0
def CalcMove(currentTime, intervall, range):
    pos = Fract( (currentTime - startTime) / intervall ) * 2.0
    pos = pos if pos < 1.0 else (2.0-pos)
    return range[0] + (range[1] - range[0]) * pos
    
# read shader program and compile shader
def CompileShader( sourceFileName, shaderStage ):
    with open( sourceFileName, 'r' ) as sourceFile:
        sourceCode = sourceFile.read()
    nameMap = { GL_VERTEX_SHADER: 'vertex', GL_GEOMETRY_SHADER: 'geometry', GL_FRAGMENT_SHADER: 'fragment' }    
    print( '\n%s shader code:' % nameMap.get(shaderStage, '') )
    print( sourceCode )
    shaderObj = glCreateShader( shaderStage )
    glShaderSource( shaderObj, sourceCode )
    glCompileShader( shaderObj )
    result = glGetShaderiv( shaderObj, GL_COMPILE_STATUS )
    if not (result):
        print( glGetShaderInfoLog( shaderObj ) )
        sys.exit()
    return shaderObj

# link shader objects to shader program
def LinkProgram( shaderObjs ):
    shaderProgram = glCreateProgram()
    for shObj in shaderObjs:
        glAttachShader( shaderProgram, shObj )
    glLinkProgram( shaderProgram )
    result = glGetProgramiv( shaderProgram, GL_LINK_STATUS )
    if not (result):
        print( 'link error:' )
        print( glGetProgramInfoLog( shaderProgram ) )
        sys.exit()
    return shaderProgram

# create vertex array object
def CreateVAO( dataArrays ):
    noOfBuffers = len(dataArrays)
    buffers = glGenBuffers(noOfBuffers)
    newVAObj = glGenVertexArrays( 1 )
    glBindVertexArray( newVAObj )
    for inx in range(0, noOfBuffers):
        vertexSize, dataArr = dataArrays[inx]
        arr = np.array( dataArr, dtype='float32' )
        glBindBuffer( GL_ARRAY_BUFFER, buffers[inx] )
        glBufferData( GL_ARRAY_BUFFER, arr, GL_STATIC_DRAW )
        glEnableVertexAttribArray( inx )
        glVertexAttribPointer( inx, vertexSize, GL_FLOAT, GL_FALSE, 0, None )
    return newVAObj 

# representation of a uniform block
class UniformBlock:
     def __init__(self, shaderProg, name):
        self.shaderProg = shaderProg 
        self.name = name
     def Link(self, bindingPoint):
        self.bindingPoint = bindingPoint
        self.noOfUniforms = glGetProgramiv(self.shaderProg, GL_ACTIVE_UNIFORMS)
        self.maxUniformNameLen = glGetProgramiv(self.shaderProg, GL_ACTIVE_UNIFORM_MAX_LENGTH)
        self.index = glGetUniformBlockIndex(self.shaderProg, self.name)
        intData = np.zeros(1, dtype=int)
        glGetActiveUniformBlockiv(self.shaderProg, self.index, GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS, intData)
        self.count = intData[0]
        self.indices = np.zeros(self.count, dtype=int)
        glGetActiveUniformBlockiv(self.shaderProg, self.index, GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES, self.indices)
        self.offsets = np.zeros(self.count, dtype=int)
        glGetActiveUniformsiv(self.shaderProg, self.count, self.indices, GL_UNIFORM_OFFSET, self.offsets)
        strLengthData = np.zeros(1, dtype=int)
        arraysizeData = np.zeros(1, dtype=int)
        typeData = np.zeros(1, dtype='uint32')
        nameData = np.chararray(self.maxUniformNameLen+1)
        self.namemap = {}
        self.dataSize = 0 
        for inx in range(0, len(self.indices)):
            glGetActiveUniform( self.shaderProg, self.indices[inx], self.maxUniformNameLen, strLengthData, arraysizeData,     typeData, nameData.data )
            name = nameData.tostring()[:strLengthData[0]]
            self.namemap[name] = inx
            self.dataSize = max(self.dataSize, self.offsets[inx] + arraysizeData * 16) 
        glUniformBlockBinding(self.shaderProg, self.index, self.bindingPoint)
        print('\nuniform block %s size:%4d' % (self.name, self.dataSize))
        for uName in self.namemap:
            print( '    %-40s index:%2d    offset:%4d' % (uName, self.indices[self.namemap[uName]], self.offsets[self.namemap    [uName]]) ) 

# representation of a uniform block buffer
class UniformBlockBuffer:
    def __init__(self, ub):
        self.namemap = ub.namemap
        self.offsets = ub.offsets
        self.bindingPoint = ub.bindingPoint
        self.object = glGenBuffers(1)
        self.dataSize = ub.dataSize
        glBindBuffer(GL_UNIFORM_BUFFER, self.object)
        dataArray = np.zeros(self.dataSize//4, dtype='float32')
        glBufferData(GL_UNIFORM_BUFFER, self.dataSize, dataArray, GL_DYNAMIC_DRAW)
    def BindToTarget(self):
        glBindBuffer(GL_UNIFORM_BUFFER, self.object)
        glBindBufferBase(GL_UNIFORM_BUFFER, self.bindingPoint, self.object)
    def BindDataFloat(self, name, dataArr):
        glBindBuffer(GL_UNIFORM_BUFFER, self.object)
        dataArray = np.array(dataArr, dtype='float32')
        glBufferSubData(GL_UNIFORM_BUFFER, self.offsets[self.namemap[name]], len(dataArr)*4, dataArray)

def Translate(matA, trans):
    matB = np.copy(matA)
    for i in range(0, 4): matB[3,i] = matA[0,i] * trans[0] + matA[1,i] * trans[1] + matA[2,i] * trans[2] + matA[3,i] 
    return matB

def Scale(matA, s):
    matB = np.copy(matA)
    for i0 in range(0, 3):
        for i1 in range(0, 4): matB[i0,i1] = matA[i0,i1] * s[i0] 
    return matB

def RotateHlp(matA, angDeg, a0, a1):
    matB = np.copy(matA)
    ang = math.radians(angDeg)
    sinAng, cosAng = math.sin(ang), math.cos(ang)
    for i in range(0, 4):
        matB[a0,i] = matA[a0,i] * cosAng + matA[a1,i] * sinAng
        matB[a1,i] = matA[a0,i] * -sinAng + matA[a1,i] * cosAng
    return matB

def RotateX(matA, angDeg): return RotateHlp(matA, angDeg, 1, 2)
def RotateY(matA, angDeg): return RotateHlp(matA, angDeg, 2, 0)
def RotateZ(matA, angDeg): return RotateHlp(matA, angDeg, 0, 1)
def RotateView(matA, angDeg): return RotateZ(RotateY(RotateX(matA, angDeg[0]), angDeg[1]), angDeg[2])

def Multiply(matA, matB):
    matC = np.copy(matA)
    for i0 in range(0, 4):
        for i1 in range(0, 4):
            matC[i0,i1] = matB[i0,0] * matA[0,i1] + matB[i0,1] * matA[1,i1] + matB[i0,2] * matA[2,i1] + matB[i0,3] * matA[3,i1]        
    return matC

def ToMat33(mat44):
    mat33 = np.matrix(np.identity(3), copy=False, dtype='float32')
    for i0 in range(0, 3):
        for i1 in range(0, 3): mat33[i0, i1] = mat44[i0, i1]
    return mat33

def TransformVec4(vecA,mat44):
    vecB = np.zeros(4, dtype='float32')
    for i0 in range(0, 4):
        vecB[i0] = vecA[0] * mat44[0,i0] + vecA[1] * mat44[1,i0] + vecA[2] * mat44[2,i0]  + vecA[3] * mat44[3,i0]
    return vecB

def Perspective(fov, aspectRatio, near, far):
    fn, f_n = far + near, far - near
    r, t = aspectRatio, 1.0 / math.tan( math.radians(fov) / 2.0 )
    return np.matrix( [ [t/r,0,0,0], [0,t,0,0], [0,0,-fn/f_n,-2.0*far*near/f_n], [0,0,-1,0] ] )

def AddToBuffer( buffer, data, count=1 ): 
    for inx_c in range(0, count):
        for inx_s in range(0, len(data)): buffer.append( data[inx_s] ) 

# initialize glut
glutInit()

# create window
wndW, wndH = 800, 600
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH)
glutInitWindowPosition(0, 0)
glutInitWindowSize(wndW, wndH)
wndID = glutCreateWindow(b'OGL window') 
glutDisplayFunc(OnDraw) 
glutIdleFunc(OnDraw)

# define icosahedron vertex array opject
icoPts = [
    ( 0.000,  0.000,  1.000), ( 0.894,  0.000,  0.447), ( 0.276,  0.851,  0.447), (-0.724,  0.526,  0.447),
    (-0.724, -0.526,  0.447), ( 0.276, -0.851,  0.447), ( 0.724,  0.526, -0.447), (-0.276,  0.851, -0.447), 
    (-0.894,  0.000, -0.447), (-0.276, -0.851, -0.447), ( 0.724, -0.526, -0.447), ( 0.000,  0.000, -1.000) ]
icoCol = [ [1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.5, 0.0], [1.0, 0.0, 1.0] ]
icoIndices = [
  2,  0,  1,  3,  0,  2,  4,  0,  3,  5,  0,  4,  1,  0,  5, 11,  7,  6, 11,  8,  7, 11,  9,  8, 11, 10,  9, 11,  6, 10, 
  1,  6,  2,  2,  7,  3,  3,  8,  4,  4,  9,  5,  5, 10,  1,  2,  6,  7,  3,  7,  8,  4,  8,  9,  5,  9, 10,  1, 10,  6  ]
icoPosData = []
for inx in icoIndices: AddToBuffer( icoPosData, icoPts[inx] )
icoNVData = []
for inx_nv in range(0, len(icoIndices) // 3):
    nv = [0.0, 0.0, 0.0]
    for inx_p in range(0, 3): 
        for inx_s in range(0, 3): nv[inx_s] += icoPts[ icoIndices[inx_nv*3 + inx_p] ][inx_s]
    AddToBuffer( icoNVData, nv, 3 )
icoVAObj = CreateVAO( [ (3, icoPosData), (3, icoNVData) ] )

# load, compile and link shader
shaderProgram = LinkProgram( [
        CompileShader( 'tess.vert', GL_VERTEX_SHADER ),
        CompileShader( 'tess.tctrl', GL_TESS_CONTROL_SHADER ),
        CompileShader( 'tess.teval', GL_TESS_EVALUATION_SHADER ), 
        CompileShader( 'tess.frag', GL_FRAGMENT_SHADER )
    ] )
# get unifor locations
projectionMatLocation = glGetUniformLocation(shaderProgram, "u_projectionMat44")
modelViewMatLocation  = glGetUniformLocation(shaderProgram, "u_modelViewMat44")
normalMatLocation     = glGetUniformLocation(shaderProgram, "u_normalMat33")
# linke uniform blocks
ubMaterial = UniformBlock(shaderProgram, "UB_material")
ubLightSource = UniformBlock(shaderProgram, "UB_lightSource")
ubMaterial.Link(1)
ubLightSource.Link(2)

# create uniform block buffers
lightSourceBuffer = UniformBlockBuffer(ubLightSource)
lightSourceBuffer.BindDataFloat(b'u_lightSource.ambient', [0.2, 0.2, 0.2, 1.0])
lightSourceBuffer.BindDataFloat(b'u_lightSource.diffuse', [0.2, 0.2, 0.2, 1.0])
lightSourceBuffer.BindDataFloat(b'u_lightSource.specular', [1.0, 1.0, 1.0, 1.0])

icoMaterialBuffer = UniformBlockBuffer(ubMaterial)
icoMaterialBuffer.BindDataFloat(b'u_roughness', [0.45])
icoMaterialBuffer.BindDataFloat(b'u_fresnel0', [0.4])
icoMaterialBuffer.BindDataFloat(b'u_color', [0.6, 0.5, 0.8, 1.0])
icoMaterialBuffer.BindDataFloat(b'u_specularTint',[1.0, 0.5, 0.5, 0.8])

# start main loop
startTime = time()
glutMainLoop()