新增新列
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
print(df)
# Output:
# A B
# 0 1 4
# 1 2 5
# 2 3 6
直接分配
df['C'] = [7, 8, 9]
print(df)
# Output:
# A B C
# 0 1 4 7
# 1 2 5 8
# 2 3 6 9
新增常量列
df['C'] = 1
print(df)
# Output:
# A B C
# 0 1 4 1
# 1 2 5 1
# 2 3 6 1
列作為其他列中的表示式
df['C'] = df['A'] + df['B']
# print(df)
# Output:
# A B C
# 0 1 4 5
# 1 2 5 7
# 2 3 6 9
df['C'] = df['A']**df['B']
print(df)
# Output:
# A B C
# 0 1 4 1
# 1 2 5 32
# 2 3 6 729
操作是按元件計算的,因此如果我們將列作為列表
a = [1, 2, 3]
b = [4, 5, 6]
最後一個表示式中的列將獲得為
c = [x**y for (x,y) in zip(a,b)]
print(c)
# Output:
# [1, 32, 729]
動態建立它
df_means = df.assign(D=[10, 20, 30]).mean()
print(df_means)
# Output:
# A 2.0
# B 5.0
# C 7.0
# D 20.0 # adds a new column D before taking the mean
# dtype: float64
新增多個列
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df[['A2','B2']] = np.square(df)
print(df)
# Output:
# A B A2 B2
# 0 1 4 1 16
# 1 2 5 4 25
# 2 3 6 9 36
動態新增多個列
new_df = df.assign(A3=df.A*df.A2, B3=5*df.B)
print(new_df)
# Output:
# A B A2 B2 A3 B3
# 0 1 4 1 16 1 20
# 1 2 5 4 25 8 25
# 2 3 6 9 36 27 30