互斥
使用 std::shared_mutex 比使用 std::shared_timed_mutex 更好
效能差異超過兩倍
如果你想使用 RWLock,你會發現有兩個選擇。
它是 std::shared_mutex 和 shared_timed_mutex。
你可能認為 std::shared_timed_mutex 只是版本’std::shared_mutex + time method’。
但實施完全不同
下面的程式碼是 std::shared_mutex 的 MSVC14.1 實現
class shared_mutex
{
public:
typedef _Smtx_t * native_handle_type;
shared_mutex() _NOEXCEPT
: _Myhandle(0)
{ // default construct
}
~shared_mutex() _NOEXCEPT
{ // destroy the object
}
void lock() _NOEXCEPT
{ // lock exclusive
_Smtx_lock_exclusive(&_Myhandle);
}
bool try_lock() _NOEXCEPT
{ // try to lock exclusive
return (_Smtx_try_lock_exclusive(&_Myhandle) != 0);
}
void unlock() _NOEXCEPT
{ // unlock exclusive
_Smtx_unlock_exclusive(&_Myhandle);
}
void lock_shared() _NOEXCEPT
{ // lock non-exclusive
_Smtx_lock_shared(&_Myhandle);
}
bool try_lock_shared() _NOEXCEPT
{ // try to lock non-exclusive
return (_Smtx_try_lock_shared(&_Myhandle) != 0);
}
void unlock_shared() _NOEXCEPT
{ // unlock non-exclusive
_Smtx_unlock_shared(&_Myhandle);
}
native_handle_type native_handle() _NOEXCEPT
{ // get native handle
return (&_Myhandle);
}
shared_mutex(const shared_mutex&) = delete;
shared_mutex& operator=(const shared_mutex&) = delete;
private:
_Smtx_t _Myhandle;
};
void __cdecl _Smtx_lock_exclusive(_Smtx_t * smtx)
{ /* lock shared mutex exclusively */
AcquireSRWLockExclusive(reinterpret_cast<PSRWLOCK>(smtx));
}
void __cdecl _Smtx_lock_shared(_Smtx_t * smtx)
{ /* lock shared mutex non-exclusively */
AcquireSRWLockShared(reinterpret_cast<PSRWLOCK>(smtx));
}
int __cdecl _Smtx_try_lock_exclusive(_Smtx_t * smtx)
{ /* try to lock shared mutex exclusively */
return (TryAcquireSRWLockExclusive(reinterpret_cast<PSRWLOCK>(smtx)));
}
int __cdecl _Smtx_try_lock_shared(_Smtx_t * smtx)
{ /* try to lock shared mutex non-exclusively */
return (TryAcquireSRWLockShared(reinterpret_cast<PSRWLOCK>(smtx)));
}
void __cdecl _Smtx_unlock_exclusive(_Smtx_t * smtx)
{ /* unlock exclusive shared mutex */
ReleaseSRWLockExclusive(reinterpret_cast<PSRWLOCK>(smtx));
}
void __cdecl _Smtx_unlock_shared(_Smtx_t * smtx)
{ /* unlock non-exclusive shared mutex */
ReleaseSRWLockShared(reinterpret_cast<PSRWLOCK>(smtx));
}
你可以看到 std::shared_mutex 是在 Windows Slim Reader / Write Locks 中實現的( https://msdn.microsoft.com/ko-kr/library/windows/desktop/aa904937(v=vs.85).aspx)
現在讓我們看一下 std::shared_timed_mutex 的實現。
下面的程式碼是 std::shared_timed_mutex 的 MSVC14.1 實現
class shared_timed_mutex
{
typedef unsigned int _Read_cnt_t;
static constexpr _Read_cnt_t _Max_readers = _Read_cnt_t(-1);
public:
shared_timed_mutex() _NOEXCEPT
: _Mymtx(), _Read_queue(), _Write_queue(),
_Readers(0), _Writing(false)
{ // default construct
}
~shared_timed_mutex() _NOEXCEPT
{ // destroy the object
}
void lock()
{ // lock exclusive
unique_lock<mutex> _Lock(_Mymtx);
while (_Writing)
_Write_queue.wait(_Lock);
_Writing = true;
while (0 < _Readers)
_Read_queue.wait(_Lock); // wait for writing, no readers
}
bool try_lock()
{ // try to lock exclusive
lock_guard<mutex> _Lock(_Mymtx);
if (_Writing || 0 < _Readers)
return (false);
else
{ // set writing, no readers
_Writing = true;
return (true);
}
}
template<class _Rep,
class _Period>
bool try_lock_for(
const chrono::duration<_Rep, _Period>& _Rel_time)
{ // try to lock for duration
return (try_lock_until(chrono::steady_clock::now() + _Rel_time));
}
template<class _Clock,
class _Duration>
bool try_lock_until(
const chrono::time_point<_Clock, _Duration>& _Abs_time)
{ // try to lock until time point
auto _Not_writing = [this] { return (!_Writing); };
auto _Zero_readers = [this] { return (_Readers == 0); };
unique_lock<mutex> _Lock(_Mymtx);
if (!_Write_queue.wait_until(_Lock, _Abs_time, _Not_writing))
return (false);
_Writing = true;
if (!_Read_queue.wait_until(_Lock, _Abs_time, _Zero_readers))
{ // timeout, leave writing state
_Writing = false;
_Lock.unlock(); // unlock before notifying, for efficiency
_Write_queue.notify_all();
return (false);
}
return (true);
}
void unlock()
{ // unlock exclusive
{ // unlock before notifying, for efficiency
lock_guard<mutex> _Lock(_Mymtx);
_Writing = false;
}
_Write_queue.notify_all();
}
void lock_shared()
{ // lock non-exclusive
unique_lock<mutex> _Lock(_Mymtx);
while (_Writing || _Readers == _Max_readers)
_Write_queue.wait(_Lock);
++_Readers;
}
bool try_lock_shared()
{ // try to lock non-exclusive
lock_guard<mutex> _Lock(_Mymtx);
if (_Writing || _Readers == _Max_readers)
return (false);
else
{ // count another reader
++_Readers;
return (true);
}
}
template<class _Rep,
class _Period>
bool try_lock_shared_for(
const chrono::duration<_Rep, _Period>& _Rel_time)
{ // try to lock non-exclusive for relative time
return (try_lock_shared_until(_Rel_time
+ chrono::steady_clock::now()));
}
template<class _Time>
bool _Try_lock_shared_until(_Time _Abs_time)
{ // try to lock non-exclusive until absolute time
auto _Can_acquire = [this] {
return (!_Writing && _Readers < _Max_readers); };
unique_lock<mutex> _Lock(_Mymtx);
if (!_Write_queue.wait_until(_Lock, _Abs_time, _Can_acquire))
return (false);
++_Readers;
return (true);
}
template<class _Clock,
class _Duration>
bool try_lock_shared_until(
const chrono::time_point<_Clock, _Duration>& _Abs_time)
{ // try to lock non-exclusive until absolute time
return (_Try_lock_shared_until(_Abs_time));
}
bool try_lock_shared_until(const xtime *_Abs_time)
{ // try to lock non-exclusive until absolute time
return (_Try_lock_shared_until(_Abs_time));
}
void unlock_shared()
{ // unlock non-exclusive
_Read_cnt_t _Local_readers;
bool _Local_writing;
{ // unlock before notifying, for efficiency
lock_guard<mutex> _Lock(_Mymtx);
--_Readers;
_Local_readers = _Readers;
_Local_writing = _Writing;
}
if (_Local_writing && _Local_readers == 0)
_Read_queue.notify_one();
else if (!_Local_writing && _Local_readers == _Max_readers - 1)
_Write_queue.notify_all();
}
shared_timed_mutex(const shared_timed_mutex&) = delete;
shared_timed_mutex& operator=(const shared_timed_mutex&) = delete;
private:
mutex _Mymtx;
condition_variable _Read_queue, _Write_queue;
_Read_cnt_t _Readers;
bool _Writing;
};
class stl_condition_variable_win7 final : public stl_condition_variable_interface
{
public:
stl_condition_variable_win7()
{
__crtInitializeConditionVariable(&m_condition_variable);
}
~stl_condition_variable_win7() = delete;
stl_condition_variable_win7(const stl_condition_variable_win7&) = delete;
stl_condition_variable_win7& operator=(const stl_condition_variable_win7&) = delete;
virtual void destroy() override {}
virtual void wait(stl_critical_section_interface *lock) override
{
if (!stl_condition_variable_win7::wait_for(lock, INFINITE))
std::terminate();
}
virtual bool wait_for(stl_critical_section_interface *lock, unsigned int timeout) override
{
return __crtSleepConditionVariableSRW(&m_condition_variable, static_cast<stl_critical_section_win7 *>(lock)->native_handle(), timeout, 0) != 0;
}
virtual void notify_one() override
{
__crtWakeConditionVariable(&m_condition_variable);
}
virtual void notify_all() override
{
__crtWakeAllConditionVariable(&m_condition_variable);
}
private:
CONDITION_VARIABLE m_condition_variable;
};
你可以看到 std::shared_timed_mutex 是在 std::condition_value 中實現的。
這是一個巨大的差異。
所以讓我們檢查其中兩個的表現。
這是 1000 毫秒讀/寫測試的結果。
std::shared_mutex 處理讀/寫超過 std::shared_timed_mutex 的 2 倍
在此示例中,讀/寫比率相同,但讀取速率比實際寫入速率更頻繁。
因此,效能差異可以更大。
下面的程式碼是這個例子中的程式碼。
void useSTLSharedMutex()
{
std::shared_mutex shared_mtx_lock;
std::vector<std::thread> readThreads;
std::vector<std::thread> writeThreads;
std::list<int> data = { 0 };
volatile bool exit = false;
std::atomic<int> readProcessedCnt(0);
std::atomic<int> writeProcessedCnt(0);
for (unsigned int i = 0; i < std::thread::hardware_concurrency(); i++)
{
readThreads.push_back(std::thread([&data, &exit, &shared_mtx_lock, &readProcessedCnt]() {
std::list<int> mydata;
int localProcessCnt = 0;
while (true)
{
shared_mtx_lock.lock_shared();
mydata.push_back(data.back());
++localProcessCnt;
shared_mtx_lock.unlock_shared();
if (exit)
break;
}
std::atomic_fetch_add(&readProcessedCnt, localProcessCnt);
}));
writeThreads.push_back(std::thread([&data, &exit, &shared_mtx_lock, &writeProcessedCnt]() {
int localProcessCnt = 0;
while (true)
{
shared_mtx_lock.lock();
data.push_back(rand() % 100);
++localProcessCnt;
shared_mtx_lock.unlock();
if (exit)
break;
}
std::atomic_fetch_add(&writeProcessedCnt, localProcessCnt);
}));
}
std::this_thread::sleep_for(std::chrono::milliseconds(MAIN_WAIT_MILLISECONDS));
exit = true;
for (auto &r : readThreads)
r.join();
for (auto &w : writeThreads)
w.join();
std::cout << "STLSharedMutex READ : " << readProcessedCnt << std::endl;
std::cout << "STLSharedMutex WRITE : " << writeProcessedCnt << std::endl;
std::cout << "TOTAL READ&WRITE : " << readProcessedCnt + writeProcessedCnt << std::endl << std::endl;
}
void useSTLSharedTimedMutex()
{
std::shared_timed_mutex shared_mtx_lock;
std::vector<std::thread> readThreads;
std::vector<std::thread> writeThreads;
std::list<int> data = { 0 };
volatile bool exit = false;
std::atomic<int> readProcessedCnt(0);
std::atomic<int> writeProcessedCnt(0);
for (unsigned int i = 0; i < std::thread::hardware_concurrency(); i++)
{
readThreads.push_back(std::thread([&data, &exit, &shared_mtx_lock, &readProcessedCnt]() {
std::list<int> mydata;
int localProcessCnt = 0;
while (true)
{
shared_mtx_lock.lock_shared();
mydata.push_back(data.back());
++localProcessCnt;
shared_mtx_lock.unlock_shared();
if (exit)
break;
}
std::atomic_fetch_add(&readProcessedCnt, localProcessCnt);
}));
writeThreads.push_back(std::thread([&data, &exit, &shared_mtx_lock, &writeProcessedCnt]() {
int localProcessCnt = 0;
while (true)
{
shared_mtx_lock.lock();
data.push_back(rand() % 100);
++localProcessCnt;
shared_mtx_lock.unlock();
if (exit)
break;
}
std::atomic_fetch_add(&writeProcessedCnt, localProcessCnt);
}));
}
std::this_thread::sleep_for(std::chrono::milliseconds(MAIN_WAIT_MILLISECONDS));
exit = true;
for (auto &r : readThreads)
r.join();
for (auto &w : writeThreads)
w.join();
std::cout << "STLSharedTimedMutex READ : " << readProcessedCnt << std::endl;
std::cout << "STLSharedTimedMutex WRITE : " << writeProcessedCnt << std::endl;
std::cout << "TOTAL READ&WRITE : " << readProcessedCnt + writeProcessedCnt << std::endl << std::endl;
}