决策树
决策树是一个分类器,它使用一系列详细的规则(如 a> 7),这些规则很容易理解。
下面的示例使用长度为 3 的三个特征向量训练决策树分类器,然后预测迄今未知的第四特征向量的结果,即所谓的测试向量。
from sklearn.tree import DecisionTreeClassifier
# Define training and target set for the classifier
train = [[1,2,3],[2,5,1],[2,1,7]]
target = [10,20,30]
# Initialize Classifier.
# Random values are initialized with always the same random seed of value 0
# (allows reproducible results)
dectree = DecisionTreeClassifier(random_state=0)
dectree.fit(train, target)
# Test classifier with other, unknown feature vector
test = [2,2,3]
predicted = dectree.predict(test)
print predicted
可以使用以下方式显示输出:
import pydot
import StringIO
dotfile = StringIO.StringIO()
tree.export_graphviz(dectree, out_file=dotfile)
(graph,)=pydot.graph_from_dot_data(dotfile.getvalue())
graph.write_png("dtree.png")
graph.write_pdf("dtree.pdf")