数据框架
将数据帧子集化为较小的数据帧可以与对列表进行子集化相同地完成。
> df3 <- data.frame(x = 1:3, y = c("a", "b", "c"), stringsAsFactors = FALSE)
> df3
## x y
## 1 1 a
## 2 2 b
## 3 3 c
> df3[1] # Subset a variable by number
## x
## 1 1
## 2 2
## 3 3
> df3["x"] # Subset a variable by name
## x
## 1 1
## 2 2
## 3 3
> is.data.frame(df3[1])
## TRUE
> is.list(df3[1])
## TRUE
**** 可以使用双括号[[]]或 $
运算符$来完成将数据帧子集化为列向量。
> df3[[2]] # Subset a variable by number using [[ ]]
## [1] "a" "b" "c"
> df3[["y"]] # Subset a variable by name using [[ ]]
## [1] "a" "b" "c"
> df3$x # Subset a variable by name using $
## [1] 1 2 3
> typeof(df3$x)
## "integer"
> is.vector(df3$x)
## TRUE
**** 可以使用 i
和 j
项来完成将数据子集化为二维矩阵。
> df3[1, 2] # Subset row and column by number
## [1] "a"
> df3[1, "y"] # Subset row by number and column by name
## [1] "a"
> df3[2, ] # Subset entire row by number
## x y
## 2 2 b
> df3[ , 1] # Subset all first variables
## [1] 1 2 3
> df3[ , 1, drop = FALSE]
## x
## 1 1
## 2 2
## 3 3
注意:仅使用 j
(列)进行子集简化为变量自身的类型,但仅由 i
进行子集化会返回 data.frame
,因为不同的变量可能具有不同的类型和类别。将 drop
参数设置为 FALSE
可保留数据帧。
> is.vector(df3[, 2])
## TRUE
> is.data.frame(df3[2, ])
## TRUE
> is.data.frame(df3[, 2, drop = FALSE])
## TRUE