在数据框中选择不同的行

df = pd.DataFrame({'col_1':['A','B','A','B','C'], 'col_2':[3,4,3,5,6]})
df
# Output:
#   col_1  col_2
# 0     A      3
# 1     B      4
# 2     A      3
# 3     B      5
# 4     C      6

要获得 col_1 中的不同值,你可以使用 Series.unique()

df['col_1'].unique()
# Output:
# array(['A', 'B', 'C'], dtype=object)

但是 Series.unique() 仅适用于单个列。

要模拟选择唯一的 col_1, SQL 的 col_2 ,你可以使用 DataFrame.drop_duplicates()

df.drop_duplicates()
#   col_1  col_2
# 0     A      3
# 1     B      4
# 3     B      5
# 4     C      6

这将获取数据框中的所有唯一行。因此,如果

df = pd.DataFrame({'col_1':['A','B','A','B','C'], 'col_2':[3,4,3,5,6], 'col_3':[0,0.1,0.2,0.3,0.4]})
df
# Output:
#   col_1  col_2  col_3
# 0     A      3    0.0
# 1     B      4    0.1
# 2     A      3    0.2
# 3     B      5    0.3
# 4     C      6    0.4

df.drop_duplicates()
#   col_1  col_2  col_3
# 0     A      3    0.0
# 1     B      4    0.1
# 2     A      3    0.2
# 3     B      5    0.3
# 4     C      6    0.4

要指定选择唯一记录时要考虑的列,请将它们作为参数传递

df = pd.DataFrame({'col_1':['A','B','A','B','C'], 'col_2':[3,4,3,5,6], 'col_3':[0,0.1,0.2,0.3,0.4]})
df.drop_duplicates(['col_1','col_2'])
# Output:
#   col_1  col_2  col_3
# 0     A      3    0.0
# 1     B      4    0.1
# 3     B      5    0.3
# 4     C      6    0.4

# skip last column
# df.drop_duplicates(['col_1','col_2'])[['col_1','col_2']]
#   col_1  col_2
# 0     A      3
# 1     B      4
# 3     B      5
# 4     C      6

来源: 如何在 pandas 中的多个数据框列中选择不同