用于跟踪平移的旋转缩放形状的转换矩阵

Canvas 允许你使用 context.translatecontext.rotatecontext.scale,以便根据你需要的位置和大小绘制你的形状。

Canvas 本身使用变换矩阵来有效地跟踪变换。

  • 你可以使用 context.transform 更改 Canvas 的矩阵
  • 你可以使用单独的 translate, rotate & scale 命令更改 Canvas 的矩阵
  • 你可以用 context.setTransform 完全覆盖 Canvas 的矩阵,
  • 但是你无法读取 Canvas 的内部转换矩阵 - 它是只写的。

为什么要使用转换矩阵?

转换矩阵允许你将多个单独的平移,旋转和缩放聚合成一个易于重新应用的矩阵。

在复杂动画期间,你可以将数十(或数百)个变换应用于形状。通过使用转换矩阵,你可以(几乎)立即使用一行代码重新应用这些转换。

一些示例使用:

  • 测试鼠标是否在已翻译,旋转和缩放的形状内

    有一个内置的 context.isPointInPath 测试一个点(例如鼠标)是否在路径形状内,但与使用矩阵测试相比,这种内置测试非常慢。

    有效地测试鼠标是否在形状内部涉及获取浏览器报告的鼠标位置并以与变形形状相同的方式对其进行转换。然后,你可以应用命中测试,就好像形状没有被转换一样。

  • 重新绘制已广泛翻译,旋转和缩放的形状。

    你可以在一行代码中应用所有聚合转换,而不是使用多个 .translate, .rotate, .scale 重新应用单个转换。

  • 已经平移,旋转和缩放的碰撞测试形状

    你可以使用几何和三角学来计算构成变换形状的点,但使用变换矩阵计算这些点会更快。

转型矩阵

此代码镜像本机 context.translatecontext.rotatecontext.scale 转换命令。与原生画布矩阵不同,此矩阵具有可读性和可重用性。

方法:

  • translaterotatescale 镜像上下文转换命令,允许你将转换提供给矩阵。矩阵有效地保持聚合变换。

  • setContextTransform 获取上下文并将该上下文的矩阵设置为等于此变换矩阵。这有效地将存储在该矩阵中的所有变换重新应用于上下文。

  • resetContextTransform 将上下文的转换重置为默认状态(==未转换)。

  • getTransformedPoint 采用未转换的坐标点并将其转换为转换点。

  • getScreenPoint 采用变换后的坐标点并将其转换为未转换的点。

  • getMatrix 以矩阵数组的形式返回聚合转换。

码:

var TransformationMatrix=( function(){
    // private
    var self;
    var m=[1,0,0,1,0,0];
    var reset=function(){ var m=[1,0,0,1,0,0]; }
    var multiply=function(mat){
        var m0=m[0]*mat[0]+m[2]*mat[1];
        var m1=m[1]*mat[0]+m[3]*mat[1];
        var m2=m[0]*mat[2]+m[2]*mat[3];
        var m3=m[1]*mat[2]+m[3]*mat[3];
        var m4=m[0]*mat[4]+m[2]*mat[5]+m[4];
        var m5=m[1]*mat[4]+m[3]*mat[5]+m[5];
        m=[m0,m1,m2,m3,m4,m5];
    }
    var screenPoint=function(transformedX,transformedY){
        // invert
        var d =1/(m[0]*m[3]-m[1]*m[2]);
        im=[ m[3]*d, -m[1]*d, -m[2]*d, m[0]*d, d*(m[2]*m[5]-m[3]*m[4]), d*(m[1]*m[4]-m[0]*m[5]) ];
        // point
        return({
            x:transformedX*im[0]+transformedY*im[2]+im[4],
            y:transformedX*im[1]+transformedY*im[3]+im[5]
        });
    }
    var transformedPoint=function(screenX,screenY){
        return({
            x:screenX*m[0] + screenY*m[2] + m[4],
            y:screenX*m[1] + screenY*m[3] + m[5]
        });    
    }
    // public
    function TransformationMatrix(){
        self=this;
    }
    // shared methods
    TransformationMatrix.prototype.translate=function(x,y){
        var mat=[ 1, 0, 0, 1, x, y ];
        multiply(mat);
    };
    TransformationMatrix.prototype.rotate=function(rAngle){
        var c = Math.cos(rAngle);
        var s = Math.sin(rAngle);
        var mat=[ c, s, -s, c, 0, 0 ];    
        multiply(mat);
    };
    TransformationMatrix.prototype.scale=function(x,y){
        var mat=[ x, 0, 0, y, 0, 0 ];        
        multiply(mat);
    };
    TransformationMatrix.prototype.skew=function(radianX,radianY){
        var mat=[ 1, Math.tan(radianY), Math.tan(radianX), 1, 0, 0 ];
        multiply(mat);
    };
    TransformationMatrix.prototype.reset=function(){
        reset();
    }
    TransformationMatrix.prototype.setContextTransform=function(ctx){
        ctx.setTransform(m[0],m[1],m[2],m[3],m[4],m[5]);
    }
    TransformationMatrix.prototype.resetContextTransform=function(ctx){
        ctx.setTransform(1,0,0,1,0,0);
    }
    TransformationMatrix.prototype.getTransformedPoint=function(screenX,screenY){
        return(transformedPoint(screenX,screenY));
    }
    TransformationMatrix.prototype.getScreenPoint=function(transformedX,transformedY){
        return(screenPoint(transformedX,transformedY));
    }
    TransformationMatrix.prototype.getMatrix=function(){
        var clone=[m[0],m[1],m[2],m[3],m[4],m[5]];
        return(clone);
    }
    // return public
    return(TransformationMatrix);
})();

演示:

此演示使用上面的 Transformation MatrixClass 来:

  • 跟踪(==保存)矩形的变换矩阵。

  • 不使用上下文转换命令重绘已转换的矩形。

  • 测试鼠标是否在变换后的矩形内部单击。

码:

<!doctype html>
<html>
<head>
<style>
    body{ background-color:white; }
    #canvas{border:1px solid red; }
</style>
<script>
window.onload=(function(){

    var canvas=document.getElementById("canvas");
    var ctx=canvas.getContext("2d");
    var cw=canvas.width;
    var ch=canvas.height;
    function reOffset(){
        var BB=canvas.getBoundingClientRect();
        offsetX=BB.left;
        offsetY=BB.top;        
    }
    var offsetX,offsetY;
    reOffset();
    window.onscroll=function(e){ reOffset(); }
    window.onresize=function(e){ reOffset(); }

    // Transformation Matrix "Class"
    
    var TransformationMatrix=( function(){
        // private
        var self;
        var m=[1,0,0,1,0,0];
        var reset=function(){ var m=[1,0,0,1,0,0]; }
        var multiply=function(mat){
            var m0=m[0]*mat[0]+m[2]*mat[1];
            var m1=m[1]*mat[0]+m[3]*mat[1];
            var m2=m[0]*mat[2]+m[2]*mat[3];
            var m3=m[1]*mat[2]+m[3]*mat[3];
            var m4=m[0]*mat[4]+m[2]*mat[5]+m[4];
            var m5=m[1]*mat[4]+m[3]*mat[5]+m[5];
            m=[m0,m1,m2,m3,m4,m5];
        }
        var screenPoint=function(transformedX,transformedY){
            // invert
            var d =1/(m[0]*m[3]-m[1]*m[2]);
            im=[ m[3]*d, -m[1]*d, -m[2]*d, m[0]*d, d*(m[2]*m[5]-m[3]*m[4]), d*(m[1]*m[4]-m[0]*m[5]) ];
            // point
            return({
                x:transformedX*im[0]+transformedY*im[2]+im[4],
                y:transformedX*im[1]+transformedY*im[3]+im[5]
            });
        }
        var transformedPoint=function(screenX,screenY){
            return({
                x:screenX*m[0] + screenY*m[2] + m[4],
                y:screenX*m[1] + screenY*m[3] + m[5]
            });    
        }
        // public
        function TransformationMatrix(){
            self=this;
        }
        // shared methods
        TransformationMatrix.prototype.translate=function(x,y){
            var mat=[ 1, 0, 0, 1, x, y ];
            multiply(mat);
        };
        TransformationMatrix.prototype.rotate=function(rAngle){
            var c = Math.cos(rAngle);
            var s = Math.sin(rAngle);
            var mat=[ c, s, -s, c, 0, 0 ];    
            multiply(mat);
        };
        TransformationMatrix.prototype.scale=function(x,y){
            var mat=[ x, 0, 0, y, 0, 0 ];        
            multiply(mat);
        };
        TransformationMatrix.prototype.skew=function(radianX,radianY){
            var mat=[ 1, Math.tan(radianY), Math.tan(radianX), 1, 0, 0 ];
            multiply(mat);
        };
        TransformationMatrix.prototype.reset=function(){
            reset();
        }
        TransformationMatrix.prototype.setContextTransform=function(ctx){
            ctx.setTransform(m[0],m[1],m[2],m[3],m[4],m[5]);
        }
        TransformationMatrix.prototype.resetContextTransform=function(ctx){
            ctx.setTransform(1,0,0,1,0,0);
        }
        TransformationMatrix.prototype.getTransformedPoint=function(screenX,screenY){
            return(transformedPoint(screenX,screenY));
        }
        TransformationMatrix.prototype.getScreenPoint=function(transformedX,transformedY){
            return(screenPoint(transformedX,transformedY));
        }
        TransformationMatrix.prototype.getMatrix=function(){
            var clone=[m[0],m[1],m[2],m[3],m[4],m[5]];
            return(clone);
        }
        // return public
        return(TransformationMatrix);
    })();

    // DEMO starts here

    // create a rect and add a transformation matrix
    // to track it's translations, rotations & scalings
    var rect={x:30,y:30,w:50,h:35,matrix:new TransformationMatrix()};

    // draw the untransformed rect in black
    ctx.strokeRect(rect.x, rect.y, rect.w, rect.h);
    // Demo: label
    ctx.font='11px arial';
    ctx.fillText('Untransformed Rect',rect.x,rect.y-10);

    // transform the canvas & draw the transformed rect in red
    ctx.translate(100,0);
    ctx.scale(2,2);
    ctx.rotate(Math.PI/12);
    // draw the transformed rect
    ctx.strokeStyle='red';
    ctx.strokeRect(rect.x, rect.y, rect.w, rect.h);
    ctx.font='6px arial';
    // Demo: label
    ctx.fillText('Same Rect: Translated, rotated & scaled',rect.x,rect.y-6);
    // reset the context to untransformed state
    ctx.setTransform(1,0,0,1,0,0);

    // record the transformations in the matrix
    var m=rect.matrix;
    m.translate(100,0);
    m.scale(2,2);
    m.rotate(Math.PI/12);

    // use the rect's saved transformation matrix to reposition, 
    //     resize & redraw the rect
    ctx.strokeStyle='blue';
    drawTransformedRect(rect);

    // Demo: instructions
    ctx.font='14px arial';
    ctx.fillText('Demo: click inside the blue rect',30,200);

    // redraw a rect based on it's saved transformation matrix
    function drawTransformedRect(r){
        // set the context transformation matrix using the rect's saved matrix
        m.setContextTransform(ctx);
        // draw the rect (no position or size changes needed!)
        ctx.strokeRect( r.x, r.y, r.w, r.h );
        // reset the context transformation to default (==untransformed);
        m.resetContextTransform(ctx);
    }

    // is the point in the transformed rectangle?
    function isPointInTransformedRect(r,transformedX,transformedY){
        var p=r.matrix.getScreenPoint(transformedX,transformedY);
        var x=p.x;
        var y=p.y;
        return(x>r.x && x<r.x+r.w && y>r.y && y<r.y+r.h);
    } 

    // listen for mousedown events
    canvas.onmousedown=handleMouseDown;
    function handleMouseDown(e){
        // tell the browser we're handling this event
        e.preventDefault();
        e.stopPropagation();
        // get mouse position
        mouseX=parseInt(e.clientX-offsetX);
        mouseY=parseInt(e.clientY-offsetY);
        // is the mouse inside the transformed rect?
        if(isPointInTransformedRect(rect,mouseX,mouseY)){
            alert('You clicked in the transformed Rect');
        }
    }

    // Demo: redraw transformed rect without using
    //       context transformation commands
    function drawTransformedRect(r,color){
        var m=r.matrix;
        var tl=m.getTransformedPoint(r.x,r.y);
        var tr=m.getTransformedPoint(r.x+r.w,r.y);
        var br=m.getTransformedPoint(r.x+r.w,r.y+r.h);
        var bl=m.getTransformedPoint(r.x,r.y+r.h);
        ctx.beginPath();
        ctx.moveTo(tl.x,tl.y);
        ctx.lineTo(tr.x,tr.y);
        ctx.lineTo(br.x,br.y);
        ctx.lineTo(bl.x,bl.y);
        ctx.closePath();
        ctx.strokeStyle=color;
        ctx.stroke();
    }

}); // end window.onload
</script>
</head>
<body>
    <canvas id="canvas" width=512 height=250></canvas>
</body>
</html>