字数统计程序(在 Java Python 中)
字数统计程序就像 MapReduce 中的 Hello World
程序。
Hadoop MapReduce 是一个软件框架,用于轻松编写应用程序,以可靠,容错的方式在大型集群(数千个节点)的商用硬件上并行处理大量数据(多 TB 数据集)。
MapReduce 作业通常将输入数据集拆分为独立的块,这些块由 map 任务以完全并行的方式处理。框架对地图的输出进行排序,然后输入到 reduce 任务。通常,作业的输入和输出都存储在文件系统中。该框架负责调度任务,监视它们并重新执行失败的任务。
字数计数示例:
WordCount 示例读取文本文件并计算单词出现的频率。输入是文本文件,输出是文本文件,每行包含一个单词以及由标签分隔的单词次数。
每个映射器都将一行作为输入并将其分解为单词。然后它发出一个单词的键/值对,每个 reducer 对每个单词的计数求和,并用单词和 sum 发出单个键/值。
作为优化,减速器还用作地图输出上的组合器。这通过将每个单词组合成单个记录来减少通过网络发送的数据量。
字数代码:
package org.myorg;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class WordCount {
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
要运行该示例,命令语法为:
bin/hadoop jar hadoop-*-examples.jar wordcount [-m <#maps>] [-r <#reducers>] <in-dir> <out-dir>
读取输入目录中的所有文件(在上面的命令行中称为 in-dir),并将输入中的单词计数写入输出目录(上面称为 out-dir)。假设输入和输出都存储在 HDFS 中。如果你的输入不在 HDFS 中,而是在某个本地文件系统中,则需要使用如下命令将数据复制到 HDFS:
bin/hadoop dfs -mkdir <hdfs-dir> //not required in hadoop 0.17.2 and later
bin/hadoop dfs -copyFromLocal <local-dir> <hdfs-dir>
Python 中的字数计数示例:
mapper.py
import sys
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# split the line into words
words = line.split()
# increase counters
for word in words:
print '%s\t%s' % (word, 1)
reducer.py
import sys
current_word = None
current_count = 0
word = None
for line in sys.stdin:
# remove leading and trailing whitespaces
line = line.strip()
# parse the input we got from mapper.py
word, count = line.split('\t', 1)
# convert count (currently a string) to int
try:
count = int(count)
except ValueError:
# count was not a number, so silently
# ignore/discard this line
continue
if current_word == word:
current_count += count
else:
if current_word:
print '%s\t%s' % (current_word, current_count)
current_count = count
current_word = word
if current_word == word:
print '%s\t%s' % (current_word, current_count)
上述程序可以使用 cat filename.txt | python mapper.py | sort -k1,1 | python reducer.py
运行