做一个预测

# imports
import weka.classifiers.trees.J48 as J48
import weka.core.converters.ConverterUtils.DataSource as DS
import os

# load training data
data = DS.read(os.environ.get("MOOC_DATA") + os.sep + "anneal_train.arff")
data.setClassIndex(data.numAttributes() - 1)

# configure classifier
cls = J48()
cls.setOptions(["-C", "0.3"])

# build classifier on training data
cls.buildClassifier(data)

# load unlabeled data
dataUnl = DS.read(os.environ.get("MOOC_DATA") + os.sep + "anneal_unlbl.arff")
dataUnl.setClassIndex(dataUnl.numAttributes() - 1)

# test compatibility of train/unlabeled datasets
msg = dataUnl.equalHeadersMsg(data)
if msg is not None:
    print("train and prediction data are not compatible:\n" + msg)

# make predictions
for inst in dataUnl:
    dist = cls.distributionForInstance(inst)
    labelIndex = cls.classifyInstance(inst)
    label = dataUnl.classAttribute().value(int(labelIndex))
    print(str(dist) + " - " + str(labelIndex) + " - " + label)