描述性统计

可以使用 .describe() 方法计算数值列的描述性统计(平均值,标准偏差,观察数,最小值,最大值和四分位数),该方法返回描述性统计的大熊猫数据帧。

In [1]: df = pd.DataFrame({'A': [1, 2, 1, 4, 3, 5, 2, 3, 4, 1], 
                           'B': [12, 14, 11, 16, 18, 18, 22, 13, 21, 17], 
                           'C': ['a', 'a', 'b', 'a', 'b', 'c', 'b', 'a', 'b', 'a']})

In [2]: df
Out[2]: 
   A   B  C
0  1  12  a
1  2  14  a
2  1  11  b
3  4  16  a
4  3  18  b
5  5  18  c
6  2  22  b
7  3  13  a
8  4  21  b
9  1  17  a

In [3]: df.describe()
Out[3]:
               A          B
count  10.000000  10.000000
mean    2.600000  16.200000
std     1.429841   3.705851
min     1.000000  11.000000
25%     1.250000  13.250000
50%     2.500000  16.500000
75%     3.750000  18.000000
max     5.000000  22.000000

请注意,由于 C 不是数字列,因此将其从输出中排除。

In [4]: df['C'].describe()
Out[4]:
count     10
unique     3
freq       5
Name: C, dtype: object

在这种情况下,该方法通过观察次数,独特元素的数量,模式和模式的频率来总结分类数据。