描述性统计
可以使用 .describe()
方法计算数值列的描述性统计(平均值,标准偏差,观察数,最小值,最大值和四分位数),该方法返回描述性统计的大熊猫数据帧。
In [1]: df = pd.DataFrame({'A': [1, 2, 1, 4, 3, 5, 2, 3, 4, 1],
'B': [12, 14, 11, 16, 18, 18, 22, 13, 21, 17],
'C': ['a', 'a', 'b', 'a', 'b', 'c', 'b', 'a', 'b', 'a']})
In [2]: df
Out[2]:
A B C
0 1 12 a
1 2 14 a
2 1 11 b
3 4 16 a
4 3 18 b
5 5 18 c
6 2 22 b
7 3 13 a
8 4 21 b
9 1 17 a
In [3]: df.describe()
Out[3]:
A B
count 10.000000 10.000000
mean 2.600000 16.200000
std 1.429841 3.705851
min 1.000000 11.000000
25% 1.250000 13.250000
50% 2.500000 16.500000
75% 3.750000 18.000000
max 5.000000 22.000000
请注意,由于 C
不是数字列,因此将其从输出中排除。
In [4]: df['C'].describe()
Out[4]:
count 10
unique 3
freq 5
Name: C, dtype: object
在这种情况下,该方法通过观察次数,独特元素的数量,模式和模式的频率来总结分类数据。