使用计数器为树的节点编号
我们有这样的树数据类型:
data Tree a = Tree a [Tree a] deriving Show
我们希望编写一个函数,从递增计数器为树的每个节点分配一个数字:
tag::Tree a -> Tree (a, Int)
漫漫长路
首先我们要做很长一段时间,因为它很好地说明了 State
monad 的低级机制。
import Control.Monad.State
-- Function that numbers the nodes of a `Tree`.
tag::Tree a -> Tree (a, Int)
tag tree =
-- tagStep is where the action happens. This just gets the ball
-- rolling, with `0` as the initial counter value.
evalState (tagStep tree) 0
-- This is one monadic "step" of the calculation. It assumes that
-- it has access to the current counter value implicitly.
tagStep::Tree a -> State Int (Tree (a, Int))
tagStep (Tree a subtrees) = do
-- The `get::State s s` action accesses the implicit state
-- parameter of the State monad. Here we bind that value to
-- the variable `counter`.
counter <- get
-- The `put::s -> State s ()` sets the implicit state parameter
-- of the `State` monad. The next `get` that we execute will see
-- the value of `counter + 1` (assuming no other puts in between).
put (counter + 1)
-- Recurse into the subtrees. `mapM` is a utility function
-- for executing a monadic actions (like `tagStep`) on a list of
-- elements, and producing the list of results. Each execution of
-- `tagStep` will be executed with the counter value that resulted
-- from the previous list element's execution.
subtrees' <- mapM tagStep subtrees
return $ Tree (a, counter) subtrees'
重构
将计数器拆分为 postIncrement 操作
我们正在使用当前计数器然后 put
ting counter + 1 的位可以分成一个 postIncrement
动作,类似于许多 C 风格的语言提供的:
postIncrement::Enum s => State s s
postIncrement = do
result <- get
modify succ
return result
将树步行拆分为高阶函数
树行走逻辑可以拆分为自己的函数,如下所示:
mapTreeM::Monad m => (a -> m b) -> Tree a -> m (Tree b)
mapTreeM action (Tree a subtrees) = do
a' <- action a
subtrees' <- mapM (mapTreeM action) subtrees
return $ Tree a' subtrees'
有了这个和 postIncrement
功能,我们可以重写 tagStep
:
tagStep::Tree a -> State Int (Tree (a, Int))
tagStep = mapTreeM step
where step::a -> State Int (a, Int)
step a = do
counter <- postIncrement
return (a, counter)
使用 Traversable
类
上面的 mapTreeM
解决方案可以很容易地重写为 Traversable
类的一个实例 :
instance Traversable Tree where
traverse action (Tree a subtrees) =
Tree <$> action a <*> traverse action subtrees
请注意,这要求我们使用 Applicative
(<*>
运算符)而不是 Monad
。
有了它,现在我们可以像专业人士一样写 tag
:
tag::Traversable t => t a -> t (a, Int)
tag init t = evalState (traverse step t) 0
where step a = do tag <- postIncrement
return (a, tag)
请注意,这适用于任何 Traversable
类型,而不仅仅是我们的 Tree
类型!
摆脱 Traversable
样板
GHC 有一个 DeriveTraversable
扩展,无需编写上面的实例:
{-# LANGUAGE DeriveFunctor, DeriveFoldable, DeriveTraversable #-}
data Tree a = Tree a [Tree a]
deriving (Show, Functor, Foldable, Traversable)